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I. Solution

1.1 Let O be their centre of mass. Hence

MR —mr=0 (1)
) GMm
mey;yr = ———
R+ r) )
Ma)gR _ GMm2
R+ r)
. 5 G(M+m)
From Eq. (2), or using reduced mass, @) = ————=
(R + r)
s GM+m)  GM Gm

Hence, w; = = > = e 3)
(R+) r(R+r) R(R+T)
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1.2 Since p isinfinitesimal, it has no gravitational influences on the motion of neither M nor
m . For u toremain stationary relative to both M and m we must have:

M G(M +
G z’ucosé?l +G—n3’ucosc92 = pwlp = (_m}),u ........................... 4)
i 7 (R + r)
Mu . .
G 2,u sing, = Gn;t,u sinf, (5)
h h
. ... GM . . . .
Substituting —— from Eq. (5) into Eq. (4), and using the identity
h
sin @ cos 0, +cos g, sin @, =sin(f, +6,) , we get
i M+
m s1n(¢912+ %) _ ( m3) psing (6)
7 (R + r)
The distances r,and p, the angles 6, and 6, are related by two SineRule equations
siny,  sing),
o, R
) N (7)
siny, _sin(6,+6,)
r, R+r
Substitute (7) into (6)
1 R (M + m)
—3= 7 R R R (10)
n (R+r) m
m R
Since = ,Eq. (10) gives
M+m R+r . (10)e
n=R+r (11)
By substituting G—T from Eq. (5) into Eq. (4), and repeat a similar procedure, we get
n
n=R+r (12)

Alternatively, i = _R and .rz = — :
sin (1 80" — ¢) sin 6, sing  sin6,
sinf _Ryn _mun
sind, r M 7
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Combining with Eq. (5) givesr, = r,

Hence, it is an equilateral triangle with

=60°
e, (13)
W, =60°
The distance p is calculated from the Cosine Rule.
>=r" +(R+7)’ =2r(R+r)cos60°
P ( ) ( Yo (14)

p=~r’+rR+R’

Alternative Solution to 1.2

Since u is infinitesimal, it has no gravitational influences on the motion of neither M nor
m .For u to remain stationary relative to both M and m we must have:

G(M+
G]\/zl,u cos &, + GHZ'U cosf, = uw'p = (—m:;),u ........................... 4)
l/i Vz (R + I")
GAZ'U sing, = an,u sing, (5)
h h
Note that d = ,R
sin(180° —¢) sin 6,
v r
= see figure
sing  siné, ( gure)
L N 6)
sin @, ron M
Equations (5) and (6): Bo=F (7)
sin 6, m ()
sng, M
W, =W, 9)
The equation (4) then becomes:
M +
M cos6, +mcosb, = (—m)rlzp ........................... (10)
(R + r)
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- 2[1-cos(6,+6,)]
6 +0, =180 —y,—y, = 180" -2y, (see figure)

1
cosy, = > v, = 607, y, = 60

Hence M and m from an equilateral triangle of sides (R + r)

Distance y to M is R+r
Distance u to m is R+r

P 2
Distance u to Ois p = \/(R+FRJ +{(R+r)§} =R +Rr+r°

2

1 Page 4 of 8
2

Equations (8) and (10): sin(6,+6,) = Mim_np SSind, (11)

M (R+r)

yo) r
Note that from figure, - = (12)
siny,  siné,
: . M+m wr |

Equations (11) and (12): s1n(6?1 +6?2) = TSINY, (13)

(R+r)

Also from figure,

(R+7)" =17 =2nr,c08(0,+6,)+r7 = 27 [1-cos(6,+6,) | oooeierrian, (14)
Equations (13) and (14): sin(6,+6,) = Y (15)

1.3 The energy of the mass f is given by

GM Gm
E=—T R R

h h

dp., 2 2
—)" + (4925 P
dt) po)

Since the perturbation is in the radial direction, angular momentum is conserved

(r,=m7,=Rand m = M),

4 2
E=-29ME | @Ry PO
R dt P
............................. (16)

Since the energy is conserved,

dE

-0

dt
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dE _20MpdR, dpdp , p® dp_o (17)
dt R dt dt dt pdt
dR dRdp dpp R
—_— =" . 18
dt dp dt  dr W (1) P
2 4 2
dE _2GMu dp ,,4Pdp_ p @ dp_o (19)
dt R dt dt dt p dt )
. dp R R
Since — # 0, we have
dt
2 4 2
2Gj3wp+d ,20_/00 6300 =0or
R dt o,
d’p 2GM  p)o)’
=— + e 20
dr D P /03 (20)
The perturbation from R, and p, gives R =R, (1 + ;—mJ and p = p, (1 + A—'Dj .
0 0
Then
d’p d’ 2GM A ‘o
dZPZF(pO+Ap):_—3pO(1+_pJ+/)O—O3 .................. (21)
4 4 3 AR Lo 3 Ap
Ryl 1+—— Pyl 1+—
R
0 0
Using binomial expansion (1+¢)" =1+ ne,
2
d Azp:—zGi”po(nA—pj[ —3Am]+p0a)§(l—3Apj. ................... (22)
dt R, Po R, Po
. R
Using Ap =—AR,
P
d’A 2GM Ap  3p,A 3A
w261 pO(H_P__PozP]erowg(l_ p) ................... (23)
dt R, Lo 0 Po
Since @] = _2G]3\1 ,
9{O
d’A Ap 3p,A 3A
dtzp —_ §p0[1+—p—’00—2'0j+a)§p0 (1——”} ................... 24)
o 0 Lo
d'Ap _ L [48p 3pAp 55
T eyl RS (25)
Po 0
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d*A 3p;
dtf - —ngp[4—i§j ................... (26)
0
P’ 3
From the figure, p, =R cos30°0r ==,
R, 4
d’Ap s 9 7
=—Ap| 4—Z |=—Z@PAp. 27
e WO T )T TP 27

7
Angular frequency of oscillationis ey @, .

Alternative solution:

M =mgivesR=r and @, = G(M + Af) = M . The unperturbed radial distance of u is NE) 3R,
(R+R) 4R’

so the perturbed radial distance can be represented by \ﬁR + ¢ where ¢ << \ﬁR as shown in

the following figure.

. 2GM d’
Using Newton’s 2™ law, — BR+O) =y (PBR+ ) — ua* (W3R + ).
g R2+(\ER+§)2}3/2( ¢) 'udtz( ¢)— par( <)
(1)
The conservation of angular momentum gives £,(N3R)* = uo(\3R+ ).
(2)

Manipulate (1) and (2) algebraically, applying ¢* ~0 and binomial approximation.
2GM d’ @,’N3R
T2 23/2(%R+§): f/_ 0\/_ 3
R +(\BR+¢)) dt*  (1+¢/\BR)
2GM d’ @, N3R
CAp? 3/2(\/§R+é’)z f_ OI 3
{4R* +2\3¢ R} dt’  (1+¢/\BR)
GM zn (1+¢/BR)  d°¢C  o’3R
4R’ (+\3¢ /2Ry dr (1+§/J§R)3

12 o o g -

. (7,
74’—_(2@) jg

@J

1.4 Relative velocity
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Let v =speed of each spacecraft as it moves in circle around the centre O.
The relative velocities are denoted by the subscripts A, B and C.
For example, v,, is the velocity of B as observed by A.

The period of circular motion is 1 year 7'=365x24x60x60s. ... (28)
2
The angular frequency @ = 77[
L
The speed v=0————=5750/s .. (29)
2cos30°

The speed is much less than the speed light = Galilean transformation.

In Cartesian coordinates, the velocities of B and C (as observed by O) are

A
.

For B, v, = vcos 60°i —vsin 60°]
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~
.

For C, v. =vcos 60°i +vsin 60° j

Hence v,. =—2vsin 60°j = —«/gvj
The speed of B as observed by C is Pv=99%6ms (30)

Notice that the relative velocities for each pair are anti-parallel.

Alternative solution for 1.4

One can obtain vy by considering the rotation about the axis at one of the spacecrafts.

27

Ve =L = (5x10° km) ~ 996 m/s
365%24x60x60 s




