

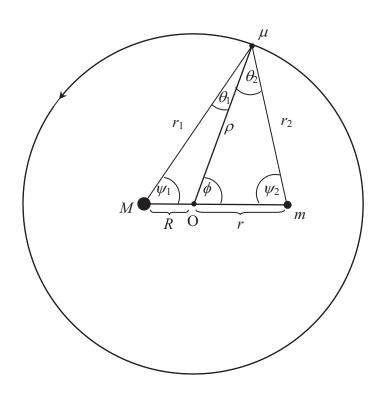
Q1_THEORY_SOLUTION_1700_SENT_TO_LEADER.DOCX

Theoretical Competition: Solution

Question 1

Page 1 of 8

I. Solution



1.1 Let O be their centre of mass. Hence

$$MR - mr = 0$$

$$m\omega_0^2 r = \frac{GMm}{\left(R+r\right)^2}$$

$$M\omega_0^2 R = \frac{GMm}{\left(R+r\right)^2} \tag{2}$$

From Eq. (2), or using reduced mass, $\omega_0^2 = \frac{G(M+m)}{(R+r)^3}$

Hence,
$$\omega_0^2 = \frac{G(M+m)}{(R+r)^3} = \frac{GM}{r(R+r)^2} = \frac{Gm}{R(R+r)^2}$$
. (3)

International Physics Olympiad Bangkok Thailand, 2011

Q1 THEORY SOLUTION 1700 SENT TO LEADER.DOCX

Theoretical Competition: Solution

Question 1 Page 2 of 8

1.2 Since μ is infinitesimal, it has no gravitational influences on the motion of neither M nor m. For μ to remain stationary relative to both M and m we must have:

$$\frac{GM\mu}{r_1^2}\cos\theta_1 + \frac{Gm\mu}{r_2^2}\cos\theta_2 = \mu\omega_0^2\rho = \frac{G(M+m)\mu}{(R+r)^3}\rho \qquad (4)$$

$$\frac{GM\mu}{r_1^2}\sin\theta_1 = \frac{Gm\mu}{r_2^2}\sin\theta_2 \qquad (5)$$

Substituting $\frac{GM}{r_1^2}$ from Eq. (5) into Eq. (4), and using the identity

 $\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2 = \sin(\theta_1 + \theta_2)$, we get

$$m\frac{\sin(\theta_1 + \theta_2)}{r_2^2} = \frac{(M+m)}{(R+r)^3} \rho \sin \theta_1 \qquad (6)$$

The distances r_2 and ρ , the angles θ_1 and θ_2 are related by two SineRule equations

$$\frac{\sin \psi_1}{\rho} = \frac{\sin \theta_1}{R}
\frac{\sin \psi_1}{r_2} = \frac{\sin (\theta_1 + \theta_2)}{R + r}$$
(7)

Substitute (7) into (6)

$$\frac{1}{r_2^3} = \frac{R}{(R+r)^4} \frac{(M+m)}{m}$$
 (10)

Since $\frac{m}{M+m} = \frac{R}{R+r}$, Eq. (10) gives

$$r_2 = R + r \tag{11}$$

By substituting $\frac{Gm}{r_2^2}$ from Eq. (5) into Eq. (4), and repeat a similar procedure, we get

$$r_1 = R + r \tag{12}$$

Alternatively,
$$\frac{r_1}{\sin(180^\circ - \phi)} = \frac{R}{\sin \theta_1} \text{ and } \frac{r_2}{\sin \phi} = \frac{r}{\sin \theta_2}$$
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{R}{r} \times \frac{r_2}{r_1} = \frac{m}{M} \times \frac{r_2}{r_1}$$

Theoretical Competition: Solution

Question 1

Page 3 of 8

Combining with Eq. (5) gives $r_1 = r_2$

Hence, it is an equilateral triangle with

$$\psi_1 = 60^{\circ}$$
 $\psi_2 = 60^{\circ}$
.....(13)

The distance ρ is calculated from the Cosine Rule.

$$\rho^{2} = r^{2} + (R+r)^{2} - 2r(R+r)\cos 60^{\circ}$$

$$\rho = \sqrt{r^{2} + rR + R^{2}}$$
(14)

Alternative Solution to 1.2

Since μ is infinitesimal, it has no gravitational influences on the motion of neither M nor m. For μ to remain stationary relative to both M and m we must have:

$$\frac{GM\mu}{r_1^2}\cos\theta_1 + \frac{Gm\mu}{r_2^2}\cos\theta_2 = \mu\omega^2\rho = \frac{G(M+m)\mu}{(R+r)^3}\rho \qquad (4)$$

$$\frac{GM\mu}{r_1^2}\sin\theta_1 = \frac{Gm\mu}{r_2^2}\sin\theta_2 \qquad (5)$$

Note that

$$\frac{r_1}{\sin(180^\circ - \phi)} = \frac{R}{\sin \theta_1}$$

$$\frac{r_2}{\sin \phi} = \frac{r}{\sin \theta_2}$$
 (see figure)

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{R}{r} \times \frac{r_2}{r_1} = \frac{m}{M} \times \frac{r_2}{r_1} \qquad (6)$$

Equations (5) and (6): $r_1 = r_2$ (7)

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{m}{M} \tag{8}$$

$$\psi_1 = \psi_2 \qquad \dots (9)$$

The equation (4) then becomes:

$$M\cos\theta_1 + m\cos\theta_2 = \frac{(M+m)}{(R+r)^3}r_1^2\rho \qquad (10)$$

Theoretical Competition: Solution

Question 1

Page 4 of 8

Equations (8) and (10):
$$\sin(\theta_1 + \theta_2) = \frac{M+m}{M} \frac{r_1^2 \rho}{(R+r)^3} \sin \theta_2$$
(11)

Note that from figure,
$$\frac{\rho}{\sin \psi_2} = \frac{r}{\sin \theta_2}$$
 (12)

Equations (11) and (12):
$$\sin(\theta_1 + \theta_2) = \frac{M+m}{M} \frac{r_1^2 r}{(R+r)^3} \sin \psi_2$$
 (13)

Also from figure,

$$(R+r)^{2} = r_{2}^{2} - 2r_{1}r_{2}\cos(\theta_{1} + \theta_{2}) + r_{1}^{2} = 2r_{1}^{2}[1 - \cos(\theta_{1} + \theta_{2})] \qquad \dots (14)$$

Equations (13) and (14):
$$\sin(\theta_1 + \theta_2) = \frac{\sin \psi_2}{2 \left[1 - \cos(\theta_1 + \theta_2)\right]}$$
 (15)

$$\theta_1 + \theta_2 = 180^{\circ} - \psi_1 - \psi_2 = 180^{\circ} - 2\psi_2$$
 (see figure)

$$\therefore \cos \psi_2 = \frac{1}{2}, \ \psi_2 = 60^{\circ}, \ \psi_1 = 60^{\circ}$$

Hence M and m from an equilateral triangle of sides (R+r)

Distance μ to M is R+r

Distance μ to m is R+r

Distance
$$\mu$$
 to O is $\rho = \sqrt{\left(\frac{R+r}{2} - R\right)^2 + \left\{(R+r)\frac{\sqrt{3}}{2}\right\}^2} = \sqrt{R^2 + Rr + r^2}$

1.3 The energy of the mass μ is given by

$$E = -\frac{GM\mu}{r_1} - \frac{Gm\mu}{r_2} + \frac{1}{2}\mu((\frac{d\rho}{dt})^2 + \rho^2\omega^2)$$
(15)

Since the perturbation is in the radial direction, angular momentum is conserved ($r_{\!_1}=r_{\!_2}=\Re$ and $\,m=M$),

$$E = -\frac{2GM\mu}{\Re} + \frac{1}{2}\mu \left(\left(\frac{d\rho}{dt} \right)^2 + \frac{\rho_0^4 \omega_0^2}{\rho^2} \right)$$
....(16)

Since the energy is conserved,

$$\frac{dE}{dt} = 0$$

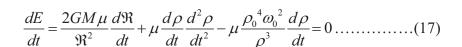
Theoretical Competition: Solution

Question 1

Page 5 of 8

R

R



$$\frac{dE}{dt} = \frac{2GM\mu}{\Re^{3}} \rho \frac{d\rho}{dt} + \mu \frac{d\rho}{dt} \frac{d^{2}\rho}{dt^{2}} - \mu \frac{\rho_{0}^{4}\omega_{0}^{2}}{\rho^{3}} \frac{d\rho}{dt} = 0 \quad(19)$$

Since $\frac{d\rho}{dt} \neq 0$, we have

$$\frac{2GM}{\Re^{3}} \rho + \frac{d^{2}\rho}{dt^{2}} - \frac{{\rho_{0}}^{4} \omega_{0}^{2}}{\rho^{3}} = 0 \text{ or }$$

$$\frac{d^2\rho}{dt^2} = -\frac{2GM}{\Re^3}\rho + \frac{\rho_0^4 \omega_0^2}{\rho^3}.$$
 (2)

The perturbation from
$$\Re_0$$
 and ρ_0 gives $\Re = \Re_0 \left(1 + \frac{\Delta \Re}{\Re_0} \right)$ and $\rho = \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0} \right)$.

Then

$$\frac{d^{2}\rho}{dt^{2}} = \frac{d^{2}}{dt^{2}}(\rho_{0} + \Delta\rho) = -\frac{2GM}{\Re_{0}^{3}\left(1 + \frac{\Delta\Re}{\Re_{0}}\right)^{3}}\rho_{0}\left(1 + \frac{\Delta\rho}{\rho_{0}}\right) + \frac{\rho_{0}^{4}\omega_{0}^{2}}{\rho_{0}^{3}\left(1 + \frac{\Delta\rho}{\rho_{0}}\right)^{3}}$$
 (21)

Using binomial expansion $(1+\varepsilon)^n \approx 1 + n\varepsilon$,

$$\frac{d^2\Delta\rho}{dt^2} = -\frac{2GM}{\Re_0^3}\rho_0 \left(1 + \frac{\Delta\rho}{\rho_0}\right) \left(1 - \frac{3\Delta\Re}{\Re_0}\right) + \rho_0\omega_0^2 \left(1 - \frac{3\Delta\rho}{\rho_0}\right). \tag{22}$$

Using $\Delta \rho = \frac{\Re}{\rho} \Delta \Re$,

$$\frac{d^2\Delta\rho}{dt^2} = -\frac{2GM}{\Re_0^3} \rho_0 \left(1 + \frac{\Delta\rho}{\rho_0} - \frac{3\rho_0\Delta\rho}{\Re_0^2} \right) + \rho_0 \omega_0^2 \left(1 - \frac{3\Delta\rho}{\rho_0} \right). \tag{23}$$

Since $\omega_0^2 = \frac{2GM}{\Re_0^3}$,

$$\frac{d^{2}\Delta\rho}{dt^{2}} = -\omega_{0}^{2}\rho_{0}\left(1 + \frac{\Delta\rho}{\rho_{0}} - \frac{3\rho_{0}\Delta\rho}{\Re_{0}^{2}}\right) + \omega_{0}^{2}\rho_{0}\left(1 - \frac{3\Delta\rho}{\rho_{0}}\right) \tag{24}$$

$$\frac{d^2\Delta\rho}{dt^2} = -\omega_0^2 \rho_0 \left(\frac{4\Delta\rho}{\rho_0} - \frac{3\rho_0\Delta\rho}{\Re_0^2} \right) \tag{25}$$

Theoretical Competition: Solution

Question 1

Page 6 of 8

$$\frac{d^2\Delta\rho}{dt^2} = -\omega_0^2\Delta\rho \left(4 - \frac{3\rho_0^2}{\Re_0^2}\right) \tag{26}$$

From the figure, $\rho_0 = \Re_0 \cos 30^\circ \text{ or } \frac{{\rho_0}^2}{{\Re_0}^2} = \frac{3}{4}$,

$$\frac{d^2 \Delta \rho}{dt^2} = -\omega_0^2 \Delta \rho \left(4 - \frac{9}{4} \right) = -\frac{7}{4} \omega_0^2 \Delta \rho . \tag{27}$$

Angular frequency of oscillation is $\frac{\sqrt{7}}{2}\omega_0$.

Alternative solution:

M = m gives R = r and $\omega_0^2 = \frac{G(M+M)}{(R+R)^3} = \frac{GM}{4R^3}$. The unperturbed radial distance of μ is $\sqrt{3}R$,

so the perturbed radial distance can be represented by $\sqrt{3}R + \zeta$ where $\zeta \ll \sqrt{3}R$ as shown in the following figure.

Using Newton's 2nd law,
$$-\frac{2GM\mu}{\{R^2 + (\sqrt{3}R + \zeta)^2\}^{3/2}}(\sqrt{3}R + \zeta) = \mu \frac{d^2}{dt^2}(\sqrt{3}R + \zeta) - \mu\omega^2(\sqrt{3}R + \zeta)$$
.

(1)

The conservation of angular momentum gives $\mu\omega_0(\sqrt{3}R)^2 = \mu\omega(\sqrt{3}R + \zeta)^2$.

(2)

Manipulate (1) and (2) algebraically, applying $\zeta^2 \approx 0$ and binomial approximation.

$$-\frac{2GM}{\{R^{2} + (\sqrt{3}R + \zeta)^{2}\}^{3/2}} (\sqrt{3}R + \zeta) = \frac{d^{2}\zeta}{dt^{2}} - \frac{\omega_{0}^{2}\sqrt{3}R}{(1 + \zeta/\sqrt{3}R)^{3}}$$

$$-\frac{2GM}{\{4R^{2} + 2\sqrt{3}\zeta R\}^{3/2}} (\sqrt{3}R + \zeta) \approx \frac{d^{2}\zeta}{dt^{2}} - \frac{\omega_{0}^{2}\sqrt{3}R}{(1 + \zeta/\sqrt{3}R)^{3}}$$

$$-\frac{GM}{4R^{3}} \sqrt{3}R \frac{(1 + \zeta/\sqrt{3}R)}{(1 + \sqrt{3}\zeta/2R)^{3/2}} = \frac{d^{2}\zeta}{dt^{2}} - \frac{\omega_{0}^{2}\sqrt{3}R}{(1 + \zeta/\sqrt{3}R)^{3}}$$

$$-\omega_{0}^{2}\sqrt{3}R \left(1 - \frac{3\sqrt{3}\zeta}{4R}\right) \left(1 + \frac{\zeta}{\sqrt{3}R}\right) \approx \frac{d^{2}\zeta}{dt^{2}} - \omega_{0}^{2}\sqrt{3}R \left(1 - \frac{3\zeta}{\sqrt{3}R}\right)$$

$$\frac{d^{2}\zeta}{dt^{2}} \zeta = -\left(\frac{7}{4}\omega_{0}^{2}\right)\zeta$$

1.4 Relative velocity

Theoretical Competition: Solution

Question 1

Page 7 of 8

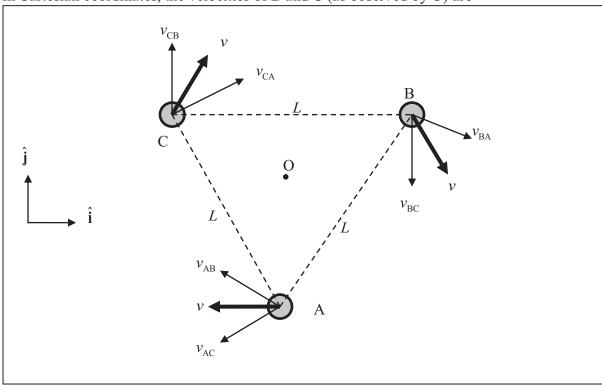
Let v = speed of each spacecraft as it moves in circle around the centre O. The relative velocities are denoted by the subscripts A, B and C. For example, v_{BA} is the velocity of B as observed by A.

The angular frequency $\omega = \frac{2\pi}{T}$

The speed
$$v = \omega \frac{L}{2\cos 30^{\circ}} = 575 \text{ m/s}$$
(29)

The speed is much less than the speed light \rightarrow Galilean transformation.

In Cartesian coordinates, the velocities of B and C (as observed by O) are



For B, $\vec{v}_B = v \cos 60^\circ \hat{\mathbf{i}} - v \sin 60^\circ \hat{\mathbf{j}}$

Q1_THEORY_SOLUTION_1700_SENT_TO_LEADER.DOCX

Theoretical Competition: Solution

Question 1

Page 8 of 8

For C,
$$\vec{v}_C = v \cos 60^{\circ} \hat{\mathbf{i}} + v \sin 60^{\circ} \hat{\mathbf{j}}$$

Hence
$$\vec{v}_{BC} = -2v\sin 60^{\circ}\hat{\mathbf{j}} = -\sqrt{3}v\hat{\mathbf{j}}$$

The speed of B as observed by C is
$$\sqrt{3}v \approx 996$$
 m/s

.....(30)

Notice that the relative velocities for each pair are anti-parallel.

Alternative solution for 1.4

One can obtain $v_{\rm BC}$ by considering the rotation about the axis at one of the spacecrafts.

$$v_{\rm BC} = \omega L = \frac{2\pi}{365 \times 24 \times 60 \times 60 \text{ s}} (5 \times 10^6 \text{ km}) \approx 996 \text{ m/s}$$