ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก

ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน

 
Advanced search

41497 Posts in 6261 Topics- by 9243 Members - Latest Member: MasterOden
Pages: 1   Go Down
Print
Author Topic: บทที่ 6 ข้อ 4  (Read 860 times)
0 Members and 1 Guest are viewing this topic.
punpunyawish
neutrino
*
Offline Offline

Posts: 40


Punyawish Patumhirunruksa


« on: November 12, 2019, 09:58:56 PM »

ข้อ. 4
จงหาความเร็วหลังชนอย่างยืดหยุ่นระหว่าง m_1 , m_2 จากภาพซึ่ง u_1 , u_2 เป็นบวก
« Last Edit: November 13, 2019, 06:15:46 AM by punpunyawish » Logged
Ittipat
neutrino
*
Offline Offline

Posts: 184

Ken


« Reply #1 on: January 01, 2020, 05:00:02 PM »

อาศัย อนุรักษ์โมเมนตัม

m_1u_1+m_2(-u_2)=m_1v_1+m_2v_2 -\raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}

อาศัย อนุรักษ์พลังงาน(ในรูปของความเร็วสัมพัทธ์)

จะได้ u_1-(-u_2)=-(v_1-v_2)

v_1=v_2-u_1-u_2

นำไปแทนใน \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}

จะได้ m_1u_1-m_2u_2=m_1(v_2-u_1-u_2)+m_2v_2

v_2(m_1+m_2)=2m_1u_1-m_2u_2+m_1u_2

v_2=\dfrac{2m_1u_1+(m_1-m_2)u_2}{m_1+m_2}

\therefore v_2=\dfrac{m_1-m_2}{m_1+m_2}u_2+\dfrac{2m_1}{m_1+m_2}u_1และในทำนองเดียวกันจะได้ v_1=\dfrac{m_2-m_1}{m_1+m_2}u_1+\dfrac{2m_2}{m_1+m_2}u_2
Logged
Pages: 1   Go Up
Print
Jump to: