ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก

ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน

 
Advanced search

41576 Posts in 6275 Topics- by 9811 Members - Latest Member: Dove1997
Pages: 1   Go Down
Print
Author Topic: บทที่ 4 ข้อ 10  (Read 703 times)
0 Members and 1 Guest are viewing this topic.
Ittipat
neutrino
*
Offline Offline

Posts: 200

Ken


« on: October 24, 2019, 12:05:54 PM »

10. อนุภาคหนึ่งเคลื่อนที่ในระนาบ XOYแบบที่พิกัด (x,y)เป็นฟังก์ชันของเวลา tดังนี้

x=x(t)\equiv A\sin \omega t

y=y(t)\equiv B\cos \omega tซึ่ง A,B,\omegaเป็นค่าคงที่

ก)จงแสดงว่าทางเดินของอนุภาคนี้เป็นรูปวงรี และวาดรูปวงรีนี้ด้วย
ข)จงหาเวกเตอร์ความเร็ว \vec{v}(t)และเวกเตอร์ความเร่ง \vec{a}(t)ที่ขณะเวลา tใดๆของอนุภาคนี้
ค)อัตราเร็วและอัตราเร่งของอนุภาคนี้มีค่าขึ้นกับเวลา tหรือไม่ และถ้าขึ้น จงวิเคราะห์หาเงื่อนไขที่จะทำให้ไม่ขึ้นกับเวลา t
Logged
Jirat_auto
neutrino
*
Offline Offline

Posts: 50


« Reply #1 on: October 25, 2019, 12:29:30 PM »

ขอลอง ก.ดูนะครับ

จาก x=A\sin \omega t

ลองยกกำลังสองและใช้ความสัมพันธ์ที่ว่า \sin^2 + \cos^2 =1 จะได้ x^2 = A^2(1-\cos^2\omega t)

ซึ่งก็เท่ากับ A^2\left (1-\left(\dfrac{y}{B}\right)^2\right) เมื่อจัดรูปต่อก็จะได้ \dfrac{x^2}{A^2}+\dfrac{y^2}{B^2} =1 ซึ่งเป็นสมการวงรี
« Last Edit: October 25, 2019, 08:53:07 PM by ปิยพงษ์ - Head Admin » Logged
Ittipat
neutrino
*
Offline Offline

Posts: 200

Ken


« Reply #2 on: October 25, 2019, 01:56:32 PM »

ข)
หาความเร็วแกน x

\vec{v}_x(t)=\dfrac{d}{dt}(A\sin \omega t)=A\omega \cos \omega t

หาความเร็วแกน y

\vec{v}_y(t)=\dfrac{d}{dt}(B\cos \omega t)=-B\omega \sin \omega t

\therefore \vec{v}(t)=A\omega \cos \omega t \hat{i}-B\omega \sin \omega t \hat{j}=\omega (A\cos \omega t\hat{i}-B \sin \omega t\hat{j})


หาความเร่งแกน x

\vec{a}_x(t)=\dfrac{d}{dt}(A\omega \cos \omega t)=-A \omega^2 \sin \omega t

หาความเร่งแกน y

\vec{a}_y(t)=\dfrac{d}{dt}(-B\omega \sin \omega t)=-B\omega^2 \cos \omega t

\therefore \vec{a}(t)=-\omega^2(A\sin \omega t\hat{i}+B\cos \omega t\hat{j})
« Last Edit: October 25, 2019, 08:48:03 PM by ปิยพงษ์ - Head Admin » Logged
Pages: 1   Go Up
Print
Jump to: