ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก

ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน

 
Advanced search

41500 Posts in 6261 Topics- by 9229 Members - Latest Member: NONNY
Pages: 1   Go Down
Print
Author Topic: GR8677.036  (Read 2841 times)
0 Members and 1 Guest are viewing this topic.
conantee
SuperHelper
*****
Offline Offline

Posts: 1400

เราเป็นอย่างไร สังคมเป็นอย่างนั้น


« on: January 02, 2010, 06:56:30 AM »

Question 34-36
The potential energy of a body constrained to move on a straight line is kx^4 where k is a constant. The position of the body is x, its speed v, its linear momentum p, and its mass m.

36. The body moves from x_1 at time t_1 to x_2 at time t_2. Which of the following quantities is an extremum for the x-t curve corresponding to this motion, if end points are fixed?
(A) \int_{t_1}^{t_2} (\frac{1}{2}mv^2 - kx^4) dt
(B) \int_{t_1}^{t_2} (\frac{1}{2}mv^2) dt
(C) \int_{t_1}^{t_2} (mxv) dt
(D) \int_{t_1}^{t_2} (\frac{1}{2}mv^2 + kx^4) dt
(E) \int_{x_1}^{x_2} (mv) dx
Logged
conantee
SuperHelper
*****
Offline Offline

Posts: 1400

เราเป็นอย่างไร สังคมเป็นอย่างนั้น


« Reply #1 on: January 02, 2010, 07:11:10 AM »

If you can remember what action is, you've done. If not, you are in trouble. However, you can cross (B) out since it is too plain (just kinetic energy?).

The correct answer is (A). The time integration of Lagrangian (L = T-V) , called action, is extremum (This theory is called principle of least action: particles choose the path such that the action is extremum).

41 of 100 people got correct answer.
Logged
Pages: 1   Go Up
Print
Jump to: