﻿ Rotation Group and (0, 2) Tensor
 ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก 1 Hour 1 Day 1 Week 1 Month Forever ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน Advanced search 41584 Posts in 6276 Topics- by 9838 Members - Latest Member: Japan
Pages: « 1 2   Go Down
 Author Topic: Rotation Group and (0, 2) Tensor  (Read 28253 times) 0 Members and 1 Guest are viewing this topic.
เกียรติศักดิ์
neutrino

Offline

Posts: 296

:)

 « Reply #15 on: February 18, 2007, 02:20:17 PM »

Oh maybe I haven't taken enough care when reading English. If a group is transitive, then its representation is transitive too right? And "the representation" in that sentence refers to the representation of an adjoint group (whatever it is).
 Logged

Scientia gaza inaestimabilis est.
SuperHelper

Offline

Posts: 6348

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ

 « Reply #16 on: February 18, 2007, 06:28:02 PM »

...
I think the ability to consider additional operation like contraction does not arise from and the fact that we are talking about , but because our present representation comprises not ordinary matrices, but ones that portray (0, 2) tensors. So all the properties we can use to reduce them are those of such tensors; contraction can always be done. The problem is what property the contraction does make use of.

...
Am I correct?

Consider orthogonal transformations where or (summation convention over repeated indices is assumed here).
Now using the above condition. Therefore the trace is invariant because of the above condition.
 Logged

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ
เกียรติศักดิ์
neutrino

Offline

Posts: 296

:)

 « Reply #17 on: February 18, 2007, 08:28:40 PM »

Oh I see.

Thank you very much. I had a chance to really think about many things during the discussion.
 Logged

Scientia gaza inaestimabilis est.
เกียรติศักดิ์
neutrino

Offline

Posts: 296

:)

 « Reply #18 on: July 19, 2007, 08:00:39 PM »

Sorry, I'm afraid I can't.
 Logged

Scientia gaza inaestimabilis est.
Pages: « 1 2   Go Up