ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก

ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน

 
Advanced search

41497 Posts in 6261 Topics- by 9230 Members - Latest Member: Kupto
Pages: 1   Go Down
Print
Author Topic: Problem 9.6*** in Taylor  (Read 2731 times)
0 Members and 1 Guest are viewing this topic.
pattyphys
neutrino
*
Offline Offline

Posts: 110


I know it is your life, but my life is you.


« on: December 21, 2006, 02:29:53 PM »

Let h(\theta) denote the height of the ocean at any point T on the surface, where h(\theta) is measured up from the level at the point Q of Figure 9.5 and \theta is the polar angle TOR of T. Given that the surface of the ocean is an equipotential, show that h(\theta)=h_0\cos^2\theta, where h_0=3M_mR_e^4/(2M_ed_0^3). Sketch and describe the shape of the ocean's surface, bearing in mind that h_0\ll R_e.
[Hint: You will need to evaluate U_{tid}(T) as given by (9.13), which d equal to the distance MT. To do this you need to find d by the law of cosines and then approximate d^{-1} using the binomial approximation, being very careful to keep all terms through order (R_e/d_0)^2. Neglect any effects of the sun.] 
« Last Edit: December 21, 2006, 02:32:40 PM by pattyphys » Logged

I don't wanna live another day without you by my side.
Pages: 1   Go Up
Print
Jump to: