มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ

สมัครสมาชิกฟรีเพื่อเห็นไฟล์แนบและดาวน์โหลดไฟล์ ขออภัยในความไม่สะดวก

ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก

ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน

 
Advanced search

41147 Posts in 6137 Topics- by 7836 Members - Latest Member: ์Nick
Pages: 1   Go Down
Print
Author Topic: Equivalence relation แบ่งสมาชิกออกเป็น distinct classes  (Read 9662 times)
0 Members and 1 Guest are viewing this topic.
เกียรติศักดิ์
Administrator
neutrino
*****
Offline Offline

Posts: 296


:)


WWW
« on: November 17, 2006, 12:34:45 AM »

Equivalence relation แบ่งสมาชิกออกเป็น distinct classes.


Instead of the proof demonstrated in class*, can I also prove this statement by proving that

"If there are two set of equivalent elements, and one element from one set is equal to an element from the other set, then the two sets are considered the same class; that is, no different classes have the same element--the classes are distinct."?

* which prove that by proving that "If there are two classes, and one element from one class is equal to an element from the other class, then the two classes are equal.".

It is what I did in class and not sure whether it is a valid proof.
« Last Edit: November 17, 2006, 12:36:43 AM by เกียรติศักดิ์ » Logged

Scientia gaza inaestimabilis est.
ปิยพงษ์ - Head Admin
Administrator
SuperHelper
*****
Online Online

Posts: 6270


มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ


WWW
« Reply #1 on: November 17, 2006, 06:04:05 AM »

...
* which prove that by proving that "If there are two classes, and one element from one class is equal to an element from the other class, then the two classes are equal.".
...

How do you prove that two classes are equal? Isn't it the same method that we did in the class?  coolsmiley
Logged

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ
เกียรติศักดิ์
Administrator
neutrino
*****
Offline Offline

Posts: 296


:)


WWW
« Reply #2 on: November 17, 2006, 10:23:53 AM »

...
* which prove that by proving that "If there are two classes, and one element from one class is equal to an element from the other class, then the two classes are equal.".
...

How do you prove that two classes are equal? Isn't it the same method that we did in the class?  coolsmiley

That's what we did in class on the blackboard (by starting with that claim; I gave it as a reference). I wonder whether it is correct to start with this alternative claim in the very beginning:
If there are two set of equivalent elements, and one element from one set is equal to an element from the other set, then the two sets are considered the same class; that is, no different classes have the same element--the classes are distinct."
« Last Edit: November 17, 2006, 11:06:27 AM by เกียรติศักดิ์ » Logged

Scientia gaza inaestimabilis est.
เกียรติศักดิ์
Administrator
neutrino
*****
Offline Offline

Posts: 296


:)


WWW
« Reply #3 on: November 17, 2006, 11:05:33 AM »

Here's how it went in my paper.

Equivalence relation แบ่งสมาชิกออกเป็น distinct classes.
Claim: If there are two sets of equivalent elements, and one element from one set is equal to an element from the other set, then the two sets are considered the same class; that is, no different classes have the same element--the classes are distinct.

Proof: Supposed that there are two sets of equivalent elements
 \{g_1, g_2, \cdots, g_r\} and  \{h_1, h_2, \cdots, h_s\} .

Let  g_i = h_j , then  g_i \equiv h_j (reflexivity).
But  g_i \equiv \forall g , so  h_j \equiv \forall g (transitivity),
and  h_j \equiv \forall h , so  g_i \equiv \forall h (transitivity).

Since each element of one set is equivalent to all elements of the other set,
the two sets can be merged into a single class.

Thus, two sets cannot be considered two classes if there exists at least one common element.
Therefore, two classes are distinct.
Logged

Scientia gaza inaestimabilis est.
Pages: 1   Go Up
Print
Jump to:  

คุณสมบัติของเด็กดี

ไม่ฟังเวลามีการนินทากัน ไม่มองหาข้อด้อยของผู้อื่น ไม่พูดนินทาเหยีบบย่ำผู้อื่น