﻿ Problem Set 1: Problem 4

# สมัครสมาชิกฟรีเพื่อเห็นไฟล์แนบและดาวน์โหลดไฟล์ ขออภัยในความไม่สะดวก

 ขอต้อนรับ ผู้มาเยือน กรุณา ล็อกอิน หรือ สมัครสมาชิก 1 Hour 1 Day 1 Week 1 Month Forever ล็อกอินด้วยชื่อผู้ใช้ รหัสผ่่าน และระยะเวลาใช้งาน Advanced search 41135 Posts in 6132 Topics- by 7740 Members - Latest Member: yy_apd
Pages: 1   Go Down
 Author Topic: Problem Set 1: Problem 4  (Read 7361 times) 0 Members and 1 Guest are viewing this topic.
เกียรติศักดิ์
neutrino

Offline

Posts: 296

:)

 « on: November 11, 2006, 04:24:17 PM »

Here is the questioning part.

Let and be the fundamental solutions of the Liouville equation, i.e. and are two linearly-independent solutions in terms of which all other solutions may be expressed (for a give value ). Then there are constants and which allow any solution to be expressed as a linear combination of this fundamental set:

These constants are determined by requiring to satisfy the boundary conditions:

Use this to show that the solution is unique, i.e., that there is one and only one solution corresponding to an eigenvalue of the Liouville equation.

I've been thinking for hours how to show... in vain. It'd be very nice if you give some hints. I guess there has something to do with the Wronskian, but that doesn't carry me quite far...
 « Last Edit: November 11, 2006, 04:47:12 PM by ปิยพงษ์ - Head Admin » Logged

Scientia gaza inaestimabilis est.
SuperHelper

Offline

Posts: 6265

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ

 « Reply #1 on: November 11, 2006, 05:20:53 PM »

...
These constants are determined by requiring to satisfy the boundary conditions:

...

If you had read the question carefully you should have noticed that the boundary conditions are:

 Logged

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ
เกียรติศักดิ์
neutrino

Offline

Posts: 296

:)

 « Reply #2 on: November 11, 2006, 05:27:26 PM »

Oh, sorry for that .

But I really have noticed them, and used them in the calculation of the Wronskian.
 « Last Edit: November 11, 2006, 05:30:01 PM by เกียรติศักดิ์ » Logged

Scientia gaza inaestimabilis est.
SuperHelper

Offline

Posts: 6265

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ

 « Reply #3 on: November 11, 2006, 05:50:12 PM »

...
But I really have noticed them, and used them in the calculation of the Wronskian.

If you write the two equations as a matrix acting on a column vector with A and B as its elements. You will get nontrivial solutions only if the determinant of ....
 Logged

มีน้ำใจ ไม่อวดตัว มั่วไม่ทำ
Pages: 1   Go Up