mPEC Forum

ฟิสิกส์โอลิมปิก วิทยาศาสตร์โอลิมปิก ข้อสอบแข่งขัน ข้อสอบชิงทุน => GRE - Physics => Topic started by: conantee on September 21, 2010, 12:48:35 PM



Title: GR9277.052
Post by: conantee on September 21, 2010, 12:48:35 PM
A particle of mass m is confined to an infinitely deep square-welled potential:
V(x) = \infty, x\leq 0, x \geq a
V(x) = 0, 0 < x <a
The normalized eigenfunctions, labeled by the quantum number n, are \psi_n = \sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}

52. The eigenfunctions satisfy the condition \int_{0}^{a} \psi_n^*(x) \psi_l(x) dx = \delta_{nl}, \delta_{nl} = 1 if n=l, otherwise \delta_{nl}=0. This is a statement that the eigenfunctions are
(A) solutions to the Schrodinger equation
(B) orthonormal
(C) bounded
(D) linearly dependent
(E) symmetric